On characterisation of Markov processes via martingale problems
نویسندگان
چکیده
Abstract. It is well-known that well-posedness of a martingale problem in the class of continuous (or r.c.l.l.) solutions enables one to construct the associated transition probability functions. We extend this result to the case when the martingale problem is well-posed in the class of solutions which are continuous in probability. This extension is used to improve on a criterion for a probability measure to be invariant for the semigroup associated with the Markov process. We also give examples of martingale problems that are well-posed in the class of solutions which are continuous in probability but for which no r.c.l.l. solution exists.
منابع مشابه
Martingale problems for conditional distributions of Markov processes
Let X be a Markov process with generator A and let Y (t) = γ(X(t)). The conditional distribution πt of X(t) given σ(Y (s) : s ≤ t) is characterized as a solution of a filtered martingale problem. As a consequence, we obtain a generator/martingale problem version of a result of Rogers and Pitman on Markov functions. Applications include uniqueness of filtering equations, exchangeability of the s...
متن کاملEquivalence of stochastic equations and martingale problems
The fact that the solution of a martingale problem for a diffusion process gives a weak solution of the corresponding Itô equation is well-known since the original work of Stroock and Varadhan. The result is typically proved by constructing the driving Brownian motion from the solution of the martingale problem and perhaps an auxiliary Brownian motion. This constructive approach is much more ch...
متن کاملMartingale approximations for continuous-time and discrete-time stationary Markov processes
We show that the method of Kipnis and Varadhan (Comm. Math. Phys. 104 (1986) 1) to construct a martingale approximation to an additive functional of a stationary ergodic Markov process via the resolvent is universal in the sense that a martingale approximation exists if and only if the resolvent representation converges. A sufficient condition for the existence of a martingale approximation is ...
متن کاملStationary Solutions and Forward Equations for Controlled and Singular Martingale Problems
Abstract Stationary distributions of Markov processes can typically be characterized as probability measures that annihilate the generator in the sense that ∫ E Afdμ = 0 for f ∈ D(A); that is, for each such μ, there exists a stationary solution of the martingale problem for A with marginal distribution μ. This result is extended to models corresponding to martingale problems that include absolu...
متن کاملMartingale Problems for Large Deviations of Markov Processes
The martingale problems provide a powerful tool for characterizing Markov processes, especially in addressing convergence issues. For each n, let metric space E-valued process X n be a solution of the A n martingale problems (i.e. f (X n (t)) ? f (X n (0)) ? Z t 0 A n f (X n (s))ds is a martingale), the convergence of A n f ! Af in some sense usually implies the weak convergence of X n) X , whe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003